Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2 (Core)

May/June 2005

1 hour 15 minutes

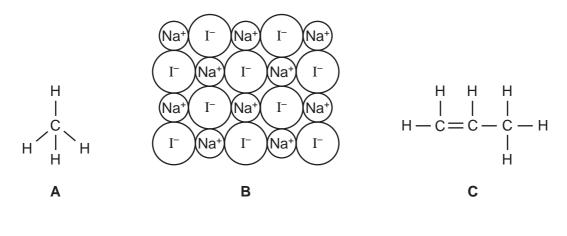
Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.


If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
Total			

International Examinations

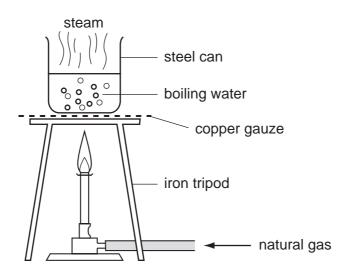
1 The structures of some substances are shown below.

(a) Answer these questions using the letters A, B, C, D or E.

(i)	Which structure is methane?	[1]
(ii)	Which two structures are giant structures? and	[1]
(iii)	Which two structures are hydrocarbons? and	[1]
(iv)	Which structure contains ions?	[1]
(v)	Which two structures have very high melting points?	
	and	[1]

(b)	Stru	icture E is a form of	carbon.			
	(i)	What is the name of Put a ring around the				
		carbide	graphite	lead	poly(hexene)	[1]
	(ii)	Name another form	of carbon.			
						[1]
(c)	Wri	te the simplest form	ula for substance B .			
						[1]
(d)		ubstance D an elem lain your answer.	ent or a compound	?		
						 [1]
(d)			ent or a compound	?		[1]

- 2 A student collected some water from a polluted river.


 The water contained soluble solids and insoluble clay and had a pH of 5.
 - (a) How can the student separate the clay from the rest of the river water?

[1]

(b) The student uses litmus paper to show that the river water is acidic. What will be the result of this test?

[1]

(c) The student then boiled the river water to obtain the soluble solids. The diagram shows how she heated the water.

Which of the substances named in the diagram is

(i)	an alloy,	[1]
(ii)	a compound which is liquid at room temperature,	[1]

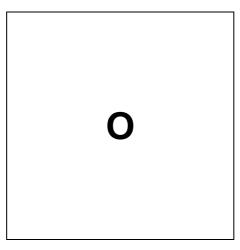
- (iii) an element, [1]
- (iv) a fuel? [1]
- [1]
- ______[']
- (e) What is the normal temperature of boiling water?

 [1]

(d) Name the main substance in natural gas.

(f) After the student boiled off the water, she analysed the white powder on the inside of the steel can.


The table shows her results.


name of ion	formula of ion	mass of ion present /milligrams
calcium	Ca ²⁺	16
carbonate	CO ₃ ²⁻	35
chloride	Cl ⁻	8
nitrate	NO ₃ ⁻	4
sodium	Na⁺	8
sulphate	SO ₄ ²⁻	6

	(i)	Which positive ion had the greatest concentration in the sample of river water?	
			[1]
	(ii)	Complete the following equation to show how a sodium ion is formed from sodium atom.	n a
		Na	[1]
(g)		tead of using natural gas, the student could have used butane to heat the water. e formula of butane is C_4H_{10} .	
	(i)	What products are formed when butane burns in excess air?	
			[1]
	(ii)	Name the poisonous gas formed when butane undergoes incomplete combustion	n.
			[1]

3	Ammonia is a	gas which forms	an alkaline	solution when	dissolved in	water.

(a)	Complete the	diagram	below	to	show	the	arrangement	of	the	molecules	in	ammonia
	gas.											

[2]

(b) Which one of the following values is most likely to represent the pH of a dilute solution of ammonia?

Put a ring around the correct answer.

(c) The structure of the ammonia molecule is shown below.

$$H \stackrel{N}{\downarrow} H$$

(i) Write the simplest formula for ammonia.

[1]

(ii) Describe the type of bonding in a molecule of ammonia.

[1]

(iii) Ammonia is a gas at room temperature. Suggest why ammonia has a low boiling point.

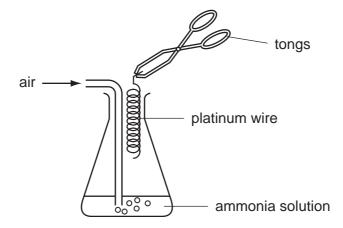
[1]

((\mathbf{d})	Many	/ fertilisers	contain	ammonium	sulphate.
١	u	iviaii		COLICALL	anninoniani	Juipilai

beaker of ammonia

solution

(4)	ivia	ily fortilloors so	main ammonia	n odipnato.			
	(i)		ust be added to und the correct		ution to mak	e ammonium su	lphate?
		HC1	HN	O_3	H ₃ PO ₄	H ₂ SO	4 [1]
	(ii)	Fill in the miss list.	sing words in th	ne following se	entence usir	ng two of the wo	ords from the
		air	hydrogen	nitrogen	soil	sodium	water
		phosphorus a	nd other eleme	nts which are i	removed fro	m the	
		when crops ar	re grown.				[2]
(e)			onia has a stror		er of a room	which is free of	draughts.


At first, the girl by the closed window cannot smell the ammonia. After 30 seconds she smells the ammonia. Use the kinetic particle theory to explain these facts.

girl

(standing by window)

[3]

(f) The diagram shows the apparatus used for oxidising ammonia in the laboratory.

First, nitrogen(II) oxide, NO, is produced. This then reacts with oxygen to form nitrogen(IV) oxide, NO₂.

(1)	where does the oxygen come nom in this reaction?	
		[1]

(ii) Balance the equation for the reaction of nitrogen(II) oxide with oxygen.

2NO +
$$O_2 \iff \dots NO_2$$
 [1]

(iii) What is the meaning of the symbol ←?

(iv) The platinum wire acts as a catalyst in the reaction. As the reaction takes place, the wire begins to glow red hot.
What does this show about the reaction?

[1]

- 4 Poly(ethene) is a plastic which is made by polymerizing ethene, C₂H₄.
 - (a) Which one of the following best describes the ethene molecules in this reaction? Put a ring around the correct answer.

alcohols alkanes monomers polymers products [1]

(b) The structure of ethane is shown below.

Explain, by referring to its bonding, why ethane cannot be polymerized.

[1]

(c) Draw the structure of ethene, showing all atoms and bonds.

[1]

- (d) Ethene is obtained by cracking alkanes.
 - (i) Explain the meaning of the term *cracking*.

(ii) What condition is needed to crack alkanes?

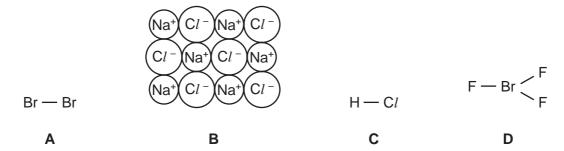
[1]

(iii) Complete the equation for cracking decane, $C_{10}H_{22}$.

 $C_{10}H_{22} \longrightarrow C_2H_4 + \dots$ [1]

- (e) Some oil companies 'crack' the ethane produced when petroleum is distilled.
 - (i) Complete the equation for this reaction.

$$C_2H_6 \longrightarrow C_2H_4 + \dots$$
 [1]


(ii)	Describe the process of fractional distillation which is used to separate the differ fractions in petroleum.	ent
		••••
		[2]
(iii)	State a use for the following petroleum fractions.	
	petrol fraction	
	lubricating fraction	[2]

5	The halogens are a group of diatomic non-metals showing a trend in colour, state and reactivity.										
	(a) In) In this description, what is the meaning of									
	(i	diatomic,					[1]				
	(ii) state? [1]										
	(b) Th	ne table gives	some information	n about some of	the halogens.						
		element	melting point /°C	boiling point /°C	colour	state at room temperature					
		chlorine	-101	-35	green						
bromine -7 +59											
		iodine	+114		grey-black						
(i) Complete the last column in the table to show the state of each of the halogens a room temperature. [2](ii) State the colour of bromine.											
							[1]				
	(iii)	Suggest a v	/alue for the boili				[1]				
							[1]				
(c) Complete the word equation for the reaction of chlorine with potassium iodide.											
	chlorine + potassium iodide → + + + [2]										

(d) (i) Draw a diagram to show the electronic structure of a chlorine molecule. Show only the outer electrons.

(ii) State a use of chlorine.

(e) The structures of some substances containing halogens are shown below.

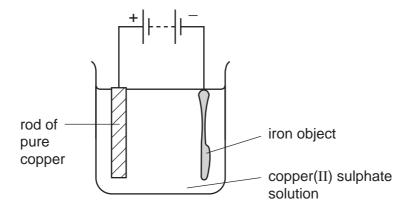
- (i) Which one of these structures, **A**, **B**, **C** or **D**, shows an element?
- (ii) Which one of these structures forms hydrochloric acid when dissolved in water?
- (iii) Complete the following sentence.

 Structure **B** conducts electricity when it is molten because

(f)	Ast	atine, At, is below iodine in Group VII of the Periodic Table.	
	(i)	In which Period of the Periodic Table is astatine?	
			[1]
	(ii)	How many protons does a tatine have in its nucleus?	
			[1]
	(iii)	Astatine has many isotopes. What do you understand by the term <i>isotopes</i> ?	
			[1]
	(iv)	The most common isotope of astatine has a nucleon number (mass number) 210. Calculate the number of neutrons in this isotope of astatine.	of
			[1]

- 6 The electroplating of iron with chromium involves four stages.
 - 1. The iron object is cleaned with sulphuric acid, then washed with water.
 - 2. The iron is plated with copper.
 - 3. It is then plated with nickel to prevent corrosion.
 - 4. It is then plated with chromium.
 - (a) The equation for stage 1 is

Fe +
$$H_2SO_4$$
 \longrightarrow FeSO₄ + H_2


(i) Write a word equation for this reaction.

[2]

(ii) Describe a test for the gas given off in this reaction.

test	
result	[2]

(b) The diagram shows how iron is electroplated with copper.

(i) Choose a word from the list below which describes the iron object. Put a ring around the correct answer.

anion anode cathode cation		anode	cathode	cation	[1
----------------------------	--	-------	---------	--------	----

(ii) What is the purpose of the copper(II) sulphate solution?

111

© UCLES 2005 0620/02/M/J/05

	(iii)	Descri	ibe v	vhat happ	ens duri	ng the el	ectrop	olating	to				
		the iro	n ob	ject,									
		the roo	d of	pure cop	oer.								[2]
	(iv)	Descri	ibe a	a test for	copper(II) ions.							
		test	•••••										
		result											
													[3]
(c)	Sug	ggest w	hy c	hromium	is used t	o electro	plate	articles	S.				
	[1]								[1]				
(d)	d) The information below shows the reactivity of chromium, copper and iron with warm hydrochloric acid.							warm					
	chr	omium	_	few bubb	les of gas	s produc	ed ev	ery sed	cond				
	сор	per	_	no bubble	es of gas	produce	d						
	iron	1	_	many bul	obles of g	jas produ	uced 6	every s	econo	t			
	Put	these t	three	e metals i	n order o	f their re	activit	y with	hydro	chloric	acid.		
				Most rea	ctive \rightarrow								
				Least rea	active →								
												I	[1]

[1]

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

DATA SHEET
The Periodic Table of the Elements

		- E			. E	4 . C			E		
	0	4 He lium	20 Ne Neon	40 Ar Argon	84 Krypton 36	131 Xe Xenon	Rn Radon 86		Lu Lutetium		
	=		19 Fluorine	35.5 C 1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70		
	5	>	5		16 Oxygen 8	32 S Sulphur	79 Selenium 34	Te Tellurium	Po Polonium 84		169 Tm Thulium
	>		14 Nitrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68		
	≥		12 C Carbon 6	28 Si licon	73 Ge Germanium 32	119 So Tin	207 Pb Lead 82		165 Ho Holmium 67		
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66		
					65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65		
					64 Copper 29	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64		
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63		
Ğ					59 Co Cobalt	Rhodium 45	192 Ir Iridium 77		Sm Samarium 62		
		T Hydrogen			56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium 61		
					Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60		
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		Pr Praseodymium 59		
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum		140 Ce Cerium 58		
					48 T Itanium	2 Zr Zirconium 40	178 Hf Hafnium 72		1		
				I	Scandium 21	89 Yttrium	139 La Lanthanum *	227 Ac Actinium 89	d series eries		
	=		9 Be Beryllium	Mg Magnesium	40 Cal cium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series		
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 Caesium 55	Fr Francium 87	*58-71 L 90-103 /		

16

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Lawrencium 103

Ľ

Nobelium

β

Fm Fermium

Es

Californium 98

BKBerkelium
97

Curium

Am
Americium
95

PuPlutonium
94

Neptunium

C 238

Ра

232 **Th** Thorium

90

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

ω **×**

Key

© UCLES 2005 0620/02/M/J/05